Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Ulf Söderlund

Ulf Söderlund

Professor

Ulf Söderlund

The precambrian mafic magmatic record, including large igneous provinces of the kalahari craton and its constituents : A paleogeographic review

Författare

  • M. O. de Kock
  • A. P. Gumsley
  • M. B. Klausen
  • U. Söderlund
  • C. Djeutchou

Summary, in English

The study of Precambrian dyke swarms, sill provinces and large igneous provinces on the Kalahari craton in southern Africa has expanded greatly since the pioneering work initiated almost four decades ago. The main contributors to this progress have been a large number of precise U–Pb crystallization ages of mafic rocks, published in a number of recent papers. This information is compiled here into a series of maps that provide a nearly 3 billion year intraplate magmatic record of the Kalahari craton and its earlier constituents, the proto-Kalahari, Kaapvaal and Zimbabwe cratons. We also review their possible paleogeographic relations to other cratons or supercontinents. This review provides a more accessible overview of individual magmatic events, and mostly includes precise U–Pb ages of mafic dykes and sills, some of which can be linked to stratigraphically well-constrained volcanic rocks. The extrusion ages of these volcanic units are also starting to be refined by, among others, in situ dating of baddeleyite. Some mafic dyke swarms, previously characterized entirely on similarity in dyke trends within a swarm, are found to be temporally composite and sometimes consist of up to three different generations. Other mafic dyke swarms, with different trends, can now be linked to protracted volcanic events like the stratigraphically well preserved Mesoarchean Nsuze Group (Pongola Supergroup) and Neoarchean Ventersdorp Supergroup. Following upon these Archean events, shorter-lived Proterozoic large igneous provinces also intrude the Transvaal Supergroup, Olifantshoek Supergroup and Umkondo Group, and include the world’s largest layered intrusion, the Bushveld Complex. Longer-lived late Paleoproterozoic magmatic events are also preserved as mafic intrusions and lava units within the Waterberg and Soutpansberg groups as well as the granitic basement. Many gaps in our knowledge of the Precambrian mafic record of the Kalahari craton remain, but further multi-disciplinary studies combining the latest advances in U–Pb geochronology and both paleomagnetism and geochemistry will help solve the Precambrian paleogeographic puzzle.

Avdelning/ar

  • Berggrundsgeologi

Publiceringsår

2019

Språk

Engelska

Sidor

155-214

Publikation/Tidskrift/Serie

Springer Geology

Dokumenttyp

Del av eller Kapitel i bok

Förlag

Springer

Ämne

  • Geology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2197-9553
  • ISSN: 2197-9545