Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Sanna

Sanna Alwmark

Postdoc

Sanna

Mineralogy, Morphology, and Emplacement History of the Maaz Formation on the Jezero Crater Floor From Orbital and Rover Observations

Författare

  • Briony Horgan
  • Arya Udry
  • Melissa Rice
  • Sanna Alwmark
  • Hans E.F. Amundsen
  • James F. Bell
  • Larry Crumpler
  • Brad Garczynski
  • Jeff Johnson
  • Kjartan Kinch
  • Lucia Mandon
  • Marco Merusi
  • Chase Million
  • Jorge I. Núñez
  • Patrick Russell
  • Justin I. Simon
  • Michael St. Clair
  • Kathryn M. Stack
  • Alicia Vaughan
  • Brittan Wogsland
  • Andrew Annex
  • Andreas Bechtold
  • Tor Berger
  • Olivier Beyssac
  • Adrian Brown
  • Ed Cloutis
  • Barbara A. Cohen
  • Sarah Fagents
  • Linda Kah
  • Ken Farley
  • David Flannery
  • Sanjeev Gupta
  • Svein Erik Hamran
  • Yang Liu
  • Gerhard Paar
  • Cathy Quantin-Nataf
  • Nicolas Randazzo
  • Eleni Ravanis
  • Steven Sholes
  • David Shuster
  • Vivian Sun
  • Christian Tate
  • Nick Tosca
  • Meenakshi Wadhwa
  • Roger C. Wiens

Summary, in English

The first samples collected by the Perseverance rover on the Mars 2020 mission were from the Maaz formation, a lava plain that covers most of the floor of Jezero crater. Laboratory analysis of these samples back on Earth would provide important constraints on the petrologic history, aqueous processes, and timing of key events in Jezero crater. However, interpreting these samples requires a detailed understanding of the emplacement and modification history of the Maaz formation. Here we synthesize rover and orbital remote sensing data to link outcrop-scale interpretations to the broader history of the crater, including Mastcam-Z mosaics and multispectral images, SuperCam chemistry and reflectance point spectra, Radar Imager for Mars' subsurface eXperiment ground penetrating radar, and orbital hyperspectral reflectance and high-resolution images. We show that the Maaz formation is composed of a series of distinct members corresponding to basaltic to basaltic-andesite lava flows. The members exhibit variable spectral signatures dominated by high-Ca pyroxene, Fe-bearing feldspar, and hematite, which can be tied directly to igneous grains and altered matrix in abrasion patches. Spectral variations correlate with morphological variations, from recessive layers that produce a regolith lag in lower Maaz, to weathered polygonally fractured paleosurfaces and crater-retaining massive blocky hummocks in upper Maaz. The Maaz members were likely separated by one or more extended periods of time, and were subjected to variable erosion, burial, exhumation, weathering, and tectonic modification. The two unique samples from the Maaz formation are representative of this diversity, and together will provide an important geochronological framework for the history of Jezero crater.

Avdelning/ar

  • Berggrundsgeologi

Publiceringsår

2023-08

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Geophysical Research: Planets

Volym

128

Issue

8

Dokumenttyp

Artikel i tidskrift

Förlag

Wiley-Blackwell

Ämne

  • Geology

Nyckelord

  • Mars
  • Perseverance
  • remote sensing
  • sample return
  • spectroscopy
  • volcanism

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2169-9097