Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Default user image.

Mikael Erlström

Forskare

Default user image.

Multidisciplinary approaches for assessing a high temperature borehole thermal energy storage facility at linköping, sweden

Författare

  • Max Hesselbrandt
  • Mikael Erlström
  • Daniel Sopher
  • Jose Acuna

Summary, in English

Assessing the optimal placement and design of a large‐scale high temperature energy storage system in crystalline bedrock is a challenging task. This study applies and evaluates various methods and strategies for pre‐site investigation for a potential high temperature borehole thermal energy storage (HT‐BTES) system at Linköping in Sweden. The storage is required to shift approximately 70 GWh of excess heat generated from a waste incineration plant during the summer to the winter season. Ideally, the site for the HT‐BTES system should be able to accommodate up to 1400 wells to 300 m depth. The presence of major fracture zones, high groundwater flow, anisotropic thermal properties, and thick Quaternary overburden are all factors that play an important role in the performance of an HT‐BTES system. Inadequate input data to the modeling and design increases the risk of unsatisfactory performance, unwanted thermal impact on the surroundings, and suboptimal placement of the HT‐BTES system, especially in a complex crystalline bedrock setting. Hence, it is crucial that the subsurface geological conditions and associated thermal properties are suitably characterized as part of pre‐investigation work. In this study, we utilize a range of methods for pre-site investigation in the greater Distorp area, in the vicinity of Linköping. Ground geophysical methods, including magnetic and Very Low‐Frequency (VLF) measurements, are collected across the study area together with outcrop observations and lab analysis on rock samples. Borehole investigations are conducted, including Thermal Response Test (TRT) and Distributed Thermal Response Test (DTRT) measurements, as well as geophysical wireline logging. Drone‐based photogrammetry is also applied to characterize the fracture distribution and orientation in outcrops. In the case of the Distorp site, these methods have proven to give useful information to optimize the placement of the HT‐BTES system and to inform design and modeling work. Furthermore, many of the methods applied in the study have proven to require only a fraction of the resources required to drill a single well, and hence, can be considered relatively efficient.

Avdelning/ar

  • Berggrundsgeologi

Publiceringsår

2021

Språk

Engelska

Publikation/Tidskrift/Serie

Energies

Volym

14

Issue

14

Dokumenttyp

Artikel i tidskrift

Förlag

MDPI AG

Ämne

  • Energy Engineering

Nyckelord

  • Boreholes
  • Crystalline bedrock
  • Drone photogrammetry
  • Energy storage
  • Logging
  • Magnetic measurements
  • Methodology
  • Thermal proper-ties
  • VLF

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1996-1073