Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Jesper Sjolte

Jesper Sjolte

Forskare

Jesper Sjolte

Warm climate isotopic simulations: what do we learn about interglacial signals in Greenland ice cores?

Författare

  • Louise C. Sime
  • Camille Risi
  • Julia C. Tindall
  • Jesper Sjolte
  • Eric W. Wolff
  • Valerie Masson-Delmotte
  • Emilie Capron

Summary, in English

Measurements of Last Interglacial stable water isotopes in ice cores show that central Greenland delta O-18 increased by at least 3 parts per thousand compared to present day. Attempting to quantify the Greenland interglacial temperature change from these ice core measurements rests on our ability to interpret the stable water isotope content of Greenland snow. Current orbitally driven interglacial simulations do not show delta O-18 or temperature rises of the correct magnitude, leading to difficulty in using only these experiments to inform our understanding of higher interglacial delta O-18. Here, analysis of greenhouse gas warmed simulations from two isotope-enabled general circulation models, in conjunction with a set of last Interglacial sea surface observations, indicates a possible explanation for the interglacial delta O-18 rise. A reduction in the winter time sea ice concentration around the northern half of Greenland, together with an increase in sea surface temperatures over the same region, is found to be sufficient to drive a >3 parts per thousand interglacial enrichment in central Greenland snow. Warm climate delta O-18 and delta D in precipitation falling on Greenland are shown to be strongly influenced by local sea surface condition changes: local sea surface warming and a shrunken sea ice extent increase the proportion of water vapour from local (isotopically enriched) sources, compared to that from distal (isotopically depleted) sources. Precipitation intermittency changes, under warmer conditions, leads to geographical variability in the delta O-18 against temperature gradients across Greenland. Little sea surface warming around the northern areas of Greenland leads to low delta O-18 against temperature gradients (0.1-0.3 parts per thousand. per degrees C), whilst large sea surface warmings in these regions leads to higher gradients (03-0.7 parts per thousand per degrees C). These gradients imply a wide possible range of present day to interglacial temperature increases (4 to >10 degrees C). Thus, we find that uncertainty about local interglacial sea surface conditions, rather than precipitation intermittency changes, may lead to the largest uncertainties in interpreting temperature from Greenland ice cores. We find that interglacial sea surface change observational records are currently insufficient to enable discrimination between these different delta O-18 against temperature gradients. In conclusion, further information on interglacial sea surface temperatures and sea ice changes around northern Greenland should indicate whether +5 degrees C during the Last Interglacial is sufficient to drive the observed ice core delta O-18 increase, or whether a larger temperature increases or ice sheet changes are also required to explain the ice core observations. (c) 2013 Elsevier Ltd. All rights reserved.

Avdelning/ar

  • Kvartärgeologi
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2013

Språk

Engelska

Sidor

59-80

Publikation/Tidskrift/Serie

Quaternary Science Reviews

Volym

67

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Geology

Nyckelord

  • Greenland
  • Interglacials
  • Atmospheric modelling
  • Stable water isotopes
  • Ice cores

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 0277-3791