Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Daniel Conley

Daniel Conley

Professor

Daniel Conley

Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

Författare

  • Raquel Vaquer-Sunyer
  • Heather E. Reader
  • Saraladevi Muthusamy
  • Markus V. Lindh
  • Jarone Pinhassi
  • Daniel J. Conley
  • Emma S. Kritzberg

Summary, in English

The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy.

Avdelning/ar

  • Geologiska institutionen
  • Biologiska institutionen
  • BECC: Biodiversity and Ecosystem services in a Changing Climate
  • Akvatisk ekologi

Publiceringsår

2016-08-23

Språk

Engelska

Sidor

4751-4765

Publikation/Tidskrift/Serie

Biogeosciences

Volym

13

Issue

16

Dokumenttyp

Artikel i tidskrift

Förlag

Copernicus GmbH

Ämne

  • Oceanography, Hydrology, Water Resources

Aktiv

Published

Forskningsgrupp

  • Aquatic Ecology

ISBN/ISSN/Övrigt

  • ISSN: 1726-4170