Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Daniel Conley

Daniel Conley

Professor

Daniel Conley

Uncertainties surrounding the oldest fossil record of diatoms

Författare

  • Karolina Brylka
  • A Alverson
  • Rebecca Pickering
  • Sylvain Richoz
  • Daniel Conley

Summary, in English

Molecular clocks estimate that diatom microalgae, one of Earth’s foremost primary producers, originated near the Triassic–Jurassic boundary (200 Ma), which is close in age to the earliest, generally accepted diatom fossils of the genus Pyxidicula. During an extensive search for Jurassic diatoms from twenty-five sites worldwide, three sites yielded microfossils initially recognized as diatoms. After applying stringent safeguards and evaluation criteria, however, the fossils found at each of the three sites were rejected as new diatom records. This led us to systematically reexamine published evidence in support of Lower- and Middle-Jurassic Pyxidicula fossils. Although Pyxidicula resembles some extant radial centric diatoms and has character states that may have been similar to those of ancestral diatoms, we describe numerous sources of uncertainty regarding the reliability of these records. We conclude that the Lower Jurassic Pyxidicula fossils were most likely calcareous nannofossils, whereas the Middle Jurassic Pyxidicula species has been reassigned to the Lower Cretaceous and is likely a testate amoeba, not a diatom. Excluding the Pyxidicula fossils widens the gap between the estimated time of origin and the oldest abundant fossil diatom record to 75 million years. This study underscores the difficulties in discovering and validating ancient microfossils.

Avdelning/ar

  • Berggrundsgeologi
  • Kvartärgeologi
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2023-05-17

Språk

Engelska

Publikation/Tidskrift/Serie

Scientific Reports

Volym

13

Dokumenttyp

Artikel i tidskrift

Förlag

Nature Publishing Group

Ämne

  • Geology

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 2045-2322