Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Carl Alwmark

Carl Alwmark


Carl Alwmark

40Ar/39Ar age evidence for an impact-generated hydrothermal system in the Devonian Siljan crater, Sweden


  • Maria Herrmann
  • Carl Alwmark
  • Michael Storey

Summary, in English

Crater-forming events are generally followed by the development of hydrothermal systems due to the rapid heating of the target rock. Such hydrothermal systems are a feature of nearly all large terrestrial impact structures. For the Siljan impact structure in Sweden, there is evidence for such a fossil hydrothermal system, possibly triggered by the impact event ca. 380 Ma. To investigate the thermal regime of the near-surface hydrothermal activity of the Siljan crater, biotite and amphibole grains extracted from samples collected in a transect across the high-pressure regime recorded by the central uplift, as well as from distal localities outside the central uplift of the crater, were dated using the 40Ar/39Ar laser step-heating technique. Our results show that biotite from inside the central uplift, which was strongly altered to chlorite by low-temperature (200-340°C) hydrothermal reactions, yields strongly disturbed age spectra. The first and second (low laser power) step ages range from ca. 1300 to 190 Ma. In contrast, biotite from outside the central uplift and amphibole, irrespective of location inside or outside of the central uplift, are much less altered, which is reflected in less disturbed, near-flat age spectra. This result indicates that the hydrothermal temperatures inside the central uplift were >200°C, sufficient to disturb the K-Ar system of biotite during its chloritization, but too low to affect the amphibole (closure temperature of 480-580°C). In contrast, the temperature of the hydrothermal system outside of the central uplift was <200°C, as no significant reset of the K-Ar system can be observed in either biotite or amphibole. Our results are consistent with estimated trapping temperatures from fluid inclusion studies, which show a decrease from 327-342°C within the central uplift to 40-225°C toward outside the central uplift. We conclude that the near-surface hydrothermal system in the Siljan impact structure was an impact-triggered system. This system was strongly active, with its highest temperature inside the central uplift and decreasing rapidly toward the outlying part of the crater.


  • Berggrundsgeologi








Special Paper of the Geological Society of America




Del av eller Kapitel i bok


  • Geology




  • ISSN: 0072-1077
  • ISBN: 9780813795508