Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Carl Alwmark

Carl Alwmark

Universitetslektor

Carl Alwmark

Study of thermal diffusivity degradation on Cu-OFE copper due to proton and self-ion irradiation using in situ transient grating spectroscopy

Författare

  • Emmanouil Trachanas
  • Angus Wylie
  • Andrea Bignami
  • Nikolaos Gazis
  • Michael P. Short
  • Katrin Michel
  • Carl Alwmark
  • Evangelos Gazis
  • Georgios Fikioris
  • Håkan Danared

Summary, in English

The operation of next-generation particle accelerator facilities with increased beam power parameters and emphasis on performance and reliability signifies the need for experimental studies on material property degradation. Literature is particularly scarce regarding the effects of ionizing radiation damage on cavity components at applicable radiation conditions, with even less extant work studying the effect of simultaneous irradiation on primary materials and their physical properties such as thermal transport. This study presents the impact on thermal diffusivity in oxygen-free electronic Cu-OFE specimens due to proton and self-ion (Cu3+) irradiation. Copper samples with the exactly same processing route as the bulk material for European Spallation Source (ESS) Radio-Frequency Quadrupole (RFQ) were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD), followed by irradiation at room temperature with protons and self-ions (Cu3+) with fluences up to 4.25 × 1017 p/cm2 and 1.10×1015 ions/cm2, 1.69×1015 ions/cm2 respectively. In situ ion irradiation transient grating spectroscopy (I3TGS) was used in order to monitor radiation-induced changes in thermal diffusivity in real time. The results indicate a significant thermal diffusivity drop only after the proton irradiation (10.86%) in contrast to the results obtained for self-ions (Cu3+) where no significant changes (∼3%) are reported. The results are compared with existing literature and correlated with the nature of post-irradiation defect structures based on the particle type. In the case of protons the contribution of hydrogen implantation in stabilization of defects and on the reduction of thermal diffusivity is discussed. I3TGS in combination with concurrent ion irradiation offers a powerful online diagnostic tool for the evaluation of the impact of operational parameters in particle accelerator components.

Avdelning/ar

  • Geologiska institutionen
  • SEM-labbet

Publiceringsår

2025-03

Språk

Engelska

Publikation/Tidskrift/Serie

Journal of Nuclear Materials

Volym

607

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Condensed Matter Physics (including Material Physics, Nano Physics)

Nyckelord

  • Particle accelerators
  • Proton irradiation
  • Radiation damage
  • Radiofrequency quadrupole (RFQ)
  • Thermal diffusivity
  • Transient grating spectroscopy (TGS)

Aktiv

Published

ISBN/ISSN/Övrigt

  • ISSN: 0022-3115