Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Johanna Stadmark

Johanna Stadmark

Forskare

Johanna Stadmark

Greenhouse gas production in a pond sediment: Effects of temperature, nitrate, acetate and season

Författare

  • Johanna Stadmark
  • Lars Leonardson

Summary, in English

In this paper we investigate the impact of nitrate (NO3-) concentration and temperature on the production of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). We studied sediment collected during spring, summer and autumn from a constructed pond in South Sweden. Homogenised sediment samples were dark incubated in vitro under N-2 atmosphere at 13 degrees C and 20 degrees C after addition of five NO3- concentrations, between 0 and 16 mg NO3- -N per litre. We found higher net production of N2O and CO, at the higher temperature. Moreover, increased NO3- concentrations had strong positive impact on the N2O3 concentration, but no effect on CH4 and CO2 production. The lack of response in CO2 is suggested to be due to the use of alternative oxidants as electron acceptors. Interaction between NO3- and temperature suggests a further increase of N-2O, net production when both NO3 and temperature are high. Our interpretation of the CH4 data is that at high concentrations of NO3 temperature is of less importance for CH4 production. We also found that at 13 degrees C CH4 production was substrate limited and that the addition of acetate increased CH4 as well as CO2 production. There was a seasonal effect on gas production potential, with more CH4 and NO produced in spring than in summer. Re-calculation of the gas concentrations into global warming potential (GWP) units (i.e. CO2, CH4, and N2O transferred to CO2 equivalents) shows that GWP increases with temperature. However, under environmental conditions generally occurring in South Swedish ponds, i.e. low temperature and high NO3 concentration during spring and high temperature and low NO3 concentration during summer, NO3- concentration is of minor importance. (C) 2007 Elsevier B.V. All rights reserved.

Avdelning/ar

  • Biologiska institutionen
  • Enhet akvatisk ekologi

Publiceringsår

2007

Språk

Engelska

Sidor

194-205

Publikation/Tidskrift/Serie

Science of the Total Environment

Volym

387

Issue

1-3

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Environmental Sciences

Nyckelord

  • pond sediment
  • substrate availability
  • methane
  • carbon dioxide
  • nitrous oxide
  • nitrate loading

Status

Published

ISBN/ISSN/Övrigt

  • ISSN: 1879-1026