Webbläsaren som du använder stöds inte av denna webbplats. Alla versioner av Internet Explorer stöds inte längre, av oss eller Microsoft (läs mer här: * https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Var god och använd en modern webbläsare för att ta del av denna webbplats, som t.ex. nyaste versioner av Edge, Chrome, Firefox eller Safari osv.

Fältarbete på Färskesjön 2013

Anne Birgitte Nielsen

Universitetslektor

Fältarbete på Färskesjön 2013

Quantifying the effects of land use and climate on Holocene vegetation in Europe

Författare

  • Laurent Marquer
  • Marie-José Gaillard
  • Shinya Sugita
  • Anneli Poska
  • Anna-Kari Trondman
  • Florence Mazier
  • Anne Birgitte Nielsen
  • Ralph M. Fyfe
  • Anna Maria Jönsson
  • Benjamin Smith
  • Jed O. Kaplan
  • Teija Alenius
  • H. John B. Birks
  • Anne E. Bjune
  • Jörg Christiansen
  • John Dodson
  • Kevin J. Edwards
  • Thomas Giesecke
  • Ulrike Herzschuh
  • Mihkel Kangur
  • Tiiu Koff
  • Małgorzata Latałowa
  • Jutta Lechterbeck
  • Jörgen Olofsson
  • Heikki Seppä

Summary, in English

Early agriculture can be detected in palaeovegetation records, but quantification of the relative importance of climate and land use in influencing regional vegetation composition since the onset of agriculture is a topic that is rarely addressed. We present a novel approach that combines pollen-based REVEALS estimates of plant cover with climate, anthropogenic land-cover and dynamic vegetation modelling results. This is used to quantify the relative impacts of land use and climate on Holocene vegetation at a sub-continental scale, i.e. northern and western Europe north of the Alps. We use redundancy analysis and variation partitioning to quantify the percentage of variation in vegetation composition explained by the climate and land-use variables, and Monte Carlo permutation tests to assess the statistical significance of each variable. We further use a similarity index to combine pollen-based REVEALS estimates with climate-driven dynamic vegetation modelling results. The overall results indicate that climate is the major driver of vegetation when the Holocene is considered as a whole and at the sub-continental scale, although land use is important regionally. Four critical phases of land-use effects on vegetation are identified. The first phase (from 7000 to 6500 BP) corresponds to the early impacts on vegetation of farming and Neolithic forest clearance and to the dominance of climate as a driver of vegetation change. During the second phase (from 4500 to 4000 BP), land use becomes a major control of vegetation. Climate is still the principal driver, although its influence decreases gradually. The third phase (from 2000 to 1500 BP) is characterised by the continued role of climate on vegetation as a consequence of late-Holocene climate shifts and specific climate events that influence vegetation as well as land use. The last phase (from 500 to 350 BP) shows an acceleration of vegetation changes, in particular during the last century, caused by new farming practices and forestry in response to population growth and industrialization. This is a unique signature of anthropogenic impact within the Holocene but European vegetation remains climatically sensitive and thus may continue to respond to ongoing climate change.

Avdelning/ar

  • Institutionen för naturgeografi och ekosystemvetenskap
  • Kvartärgeologi
  • MERGE: ModElling the Regional and Global Earth system
  • BECC: Biodiversity and Ecosystem services in a Changing Climate

Publiceringsår

2017-09-01

Språk

Engelska

Sidor

20-37

Publikation/Tidskrift/Serie

Quaternary Science Reviews

Volym

171

Dokumenttyp

Artikel i tidskrift

Förlag

Elsevier

Ämne

  • Geology
  • Other Earth and Related Environmental Sciences

Nyckelord

  • Climate
  • Europe
  • Holocene
  • Human impact
  • Land use
  • LPJ-GUESS
  • Pollen
  • REVEALS
  • Vegetation composition

Status

Published

Projekt

  • PAGES’ LandCover6k Working Group

ISBN/ISSN/Övrigt

  • ISSN: 0277-3791